
SILVER®BÜL

Installation, Maintenance, & Repair Series 4000SS/5000SS

Reduced Pressure Zone Assemblies & Reduced Pressure Detector Assemblies

Sizes: 21/2" - 6" (65 - 150mm)**

A WARNING

Read this Manual BEFORE using this equipment.

Failure to read and follow all safety and use information can result in death, serious personal injury, property damage, or damage to the equipment.

THINK SAFETY FIRST

Keep this Manual for future reference.

A WARNING

You are required to consult the local building and plumbing codes prior to installation. If the information in this manual is not consistent with local building or plumbing codes, the local codes should be followed. Inquire with governing authorities for additional local requirements.

A WARNING

Need for Periodic Inspection/Maintenance: This product must be tested periodically in compliance with local codes, but at least once per year or more as service conditions warrant. If installed on a fire suppression system, all mechanical checks, such as alarms and backflow preventers, should be flow tested and inspected in accordance with NFPA 13 and/or NFPA 25. All products must be retested once maintenance has been performed. Corrosive water conditions, and/or unauthorized adjustments or repair could render the product ineffective for the service intended. Regular checking and cleaning of the product's internal components helps assure maximum life and proper product function.

A WARNING

The installation and maintenance of backflow assemblies should be performed by a qualified, licensed technician. Failure to do so may result in a malfunctioning assembly.

NOTICE

For Australia and New Zealand, line strainers should be installed between the upstream shutoff valve and the inlet of the backflow preventer.

NOTICE

The flange gasket bolts for the gate valves should be retightened during installation as the bolts may have loosened due to storage and shipping.

Testing

For field testing procedure, refer to Ames installation sheets IS-A-ATG-1 found on **www.amesfirewater.com.**

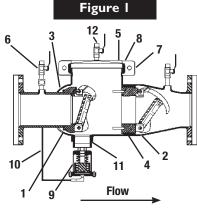
For other repair kits and service parts, refer to our Backflow Prevention Products Repair Kits & Service Parts price list PL-A-RP-BPD found on **www.amesfirewater.com**.

For technical assistance, contact your local Ames representative.

** Metric Dimensions are nominal pipe diameter. This product is produced with ASME/ANSI flanged end connections.

Installation Guidelines

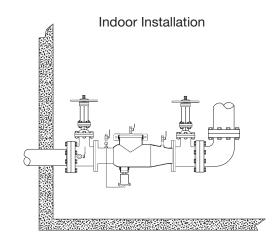
NOTICE


The flange gasket bolts for the gate valves should be retightened during installation as the bolts may have loosened due to storage and shipping.

NOTICE

Assembly body should not be painted.

Please Read Prior to Installation:

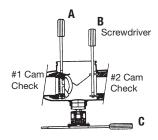

- Before installing any Ames assembly, Flush the Line thoroughly to remove all debris, chips and other foreign objects. Failure to do so may make the assembly inoperable.
- The Ames 4000SS and 5000SS Reduced Pressure Zone Assemblies are approved by ASSE (American Society of Sanitation Engineers) to be installed in horizontal positions. Local water authorities must approve all installation configurations.
- Allow sufficient clearance around the installed assembly to conduct testing, servicing, and inspection. Allow a minimum of 12" from the flood level to the bottom of the assembly.
- 4. The 4000SS and 5000SS are not recommended for pit installations. Where necessary, an Air Gap drain may be connected to the relief valve to minimize flooding of the surrounding area. Flooding may cause a cross-connection. Be sure to contact local code authorities for proper installations.
- 5. If installing on fire protection system, be sure to purge air from fire system. Fill system slowly with all inspectors test valves open.

1.	#1 Cam-Check
2.	#2 Cam-Check
3.	#1 Cam-Check O-ring
4.	#2 Cam-Check O-ring
5.	Cover Plate
6.	Ball Valve
7.	Groove Coupler

Item # Description

Item #	Description
8.	Groove Coupler Gasket
9.	Relief Valve
	(Complete assembly)
10.	Relief Valve Hose
11.	Relief Valve Body O-ring
12.	Ball Valve (Cover)

Outdoor Installation


Maintenance Instructions

A WARNING Depressurize valve before servicing.

Removing Cam-Checks

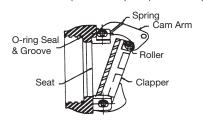
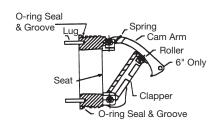
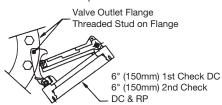

- Shut down water system and lock out system if possible. Slowly open all ball valves to relieve air and water pressure. Loosen bolts on groove coupler and remove groove coupler and cover plate from valve body.
- Remove #1 Cam-Check Assembly by using your hands to unscrew (turn counterclockwise) Cam-Check and remove through top access port. Do not use Cam Arm as a handle to unscrew Cam-Check. If Cam-Check cannot be loosened by hand, insert a long screwdriver between valve body and Cam-Check (see Figure 3). Gently apply pressure against the Cam-Check until loosened. Finish unscrewing by hand. Unscrew #2 Cam-Check (turn counterclockwise) by placing a long screwdriver across lugs and applying pressure to loosen #2 Cam-Check. Finish unscrewing by hand.
- To clean #1 Cam-Check (except 21/2" 4" (65-100mm) DC Check), locate the Cam Arm opening stud on the outlet flange of the valve assembly. Slide the Cam Arm over the stud with the check threads facing downward (Figure 5A). Tighten 1/4" nut on stud to secure cam bar. Slowly pull the assembly outward to open check. The clapper so that the end of the Cam Arm rests between roller and clapper (Figure 5B).
 - Thoroughly clean the seat area and clapper sealing surfaces of both Cam-Checks. Rinse Cam-Checks and O-rings thoroughly. Inspect seats, clapper sealing surfaces, Cam Arms, and O-rings for damage, nicks, and debris. If damaged, install a new Cam-Check assembly and/or O-ring or shutoff disc.
- Before reinstallation of check assembly, thoroughly clean O-ring groove and lubricate with F.D.A. approved lubricant. Insert and thread #2 Cam-Check first and then #1 Cam-Check. #2 Cam-Check should be tightened by inserting a long screwdriver between lugs to tighten firmly (see Figure 2). Do not over tighten. Tighten #1 Cam-Check firmly by hand only. Replace cover plate, clean groove coupler gasket and groove. Replace groove coupler. Close ball valves. Repressurize and bleed air from all test cocks.

Figure 2


Figure 3

#1 Cam Check 21/2" - 6" (65-150mm) RP (Short Cam)


Figure 4

#2 Cam Check DC & RP

Figure 5A

Cam Bar Open Pin

Figure 5B

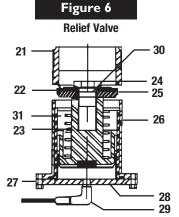
For repair kits and parts, refer to our Backflow Prevention Products Repair Kits & Service Parts price list PL-A-RP-BPD found on www.amesfirewater.com.

Relief Valve Service Instructions

A WARNING Depressurize valve before servicing.

The relief valve may be serviced while on or off the backflow preventer valve.

NOTICE


Do not use a pipe wrench to remove the relief valve assembly from the backflow preventer.

Relief Valve Disassembly

- Disconnect the relief valve hose from the elbow in the bottom flange cover at the swivel hose connection. Do not remove the
- If the valve is to be removed from the backflow preventer for service, place a screwdriver blade or flat bar across the edges of 2 of the hex head screws in the bottom flange cover and turn counterclockwise to loosen the relief valve assembly. (see Figure 2)
- Remove the 4 bottom bolts from the bottom of the relief valve assembly with a 5/16" socket or open-end wrench. Remove the bottom flange cover.
- Remove the piston assembly & sleeve from the relief valve body by placing your index fingers through the slots in the side of the body and pressing down on the top of the disc retainer in the top of the piston assembly. (See Figure 7.)
- Pull the piston assembly free of the body by grasping the sleeve and pulling down.
- Grip the sleeve and the piston assembly by the head of the hex head bolt. Pull up on the sleeve to extend the diaphragm. Slide the sleeve (Part #7013340) completely off of the diaphragm and inspect the diaphragm for tears, holes or excessive wrinkles. If the diaphragm is damaged, order a new piston/diaphragm assembly.

Relief Valve Reassembly

- Thoroughly clean all inside surfaces of the relief valve body.
- Inspect the relief valve body seat surface located at the top edge of the 3 discharge slots near the top of the body by rubbing the end of the index finger around the entire seat surface; access the seat surface through the slots or the bottom of the body. The seat must be free of nicks. If nicks are discovered, remove the body & install a new relief valve assembly.
- Position the diaphragm on the piston assembly so that it is facing up as shown in Figure 8.
- Now fold the top (ribbed) edge of the diaphragm inward, grasp the sleeve with the ribbed edge up and slide the sleeve down over the piston assembly as shown in Figure 8.
- While still holding the sleeve, slide it up over the diaphragm and, using your thumb & index finger, position the bead of the diaphragm so that it wraps over the outside of the rib on the top of the sleeve so that the sleeve is held by the diaphragm. Now place the piston assembly on a flat, firm surface with diaphragm facing up as shown in Figure 9.
- Cup your hand slightly to form an air trap and force the sleeve down over the piston assembly with a rapid slap (hard) on the open end of the diaphragm with your cupped hand. The trapped air in the diaphragm will force the diaphragm between the inside of the sleeve and the outside of the piston. Ensure that the diaphragm is fully seated by running the end of a dull "butter" knife in the formed diaphragm. If diaphragm is wrinkled, repeat previous step.
- Slide the piston assembly and sleeve into the relief valve body with the hex head bolt entering the flanged end of the body first. Slide the piston assembly in until the diaphragm lip is smoothly seated in the machined groove in the flanged end of the body. By running your index finger around the outside of the diaphragm bead, you will ensure it is seated smoothly.
- Position the bottom flange cover on the bottom of the relief valve body and secure by hand tightening the 4 bottom bolts.
- Now tighten the 4 bottom bolts to approximately 15 ft.-lbs. with a ⁵/₁₆" socket or open-end wrench.
- 10. Reattach the relief valve hose to the elbow in the bottom flange

31

Figure 6		
Item #	Part Description	
21.	Relief Valve Body	
22.*	Rubber Shut-Off Disc.	
23.*	Piston Diaphragm Assembly	
24.	Hex Head Bolt	
25.	Disc. Retainer	
26.	Sleeve	
27.	Bottom Bolt	
28.	Bottom Flange (w/St. Elbow)	
29.	Elbow St 90 3/8	
30.*	O-Ring Disk	

RV Spring

Figure 7

Figure 8

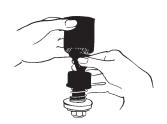
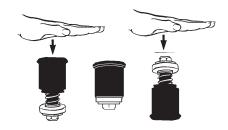



Figure 9

Testing — Reduced Pressure Zone Assemblies

Test No.1

Purpose: To test check valve No. 2 for tightness against reverse flow

Requirements: Valve must be tight against reverse flow under all pressure differentials. Slowly open the 'high' valve A and the 'vent' valve C, and keep the 'low' valve B closed. Open test cock #4. Indicated pressure differential will decrease slightly. If pressure differential continues to decrease (until the vent opens) check valve #2 is reported as 'leaking'.

Test No. 2

Purpose: To test shutoff #2 for tightness.

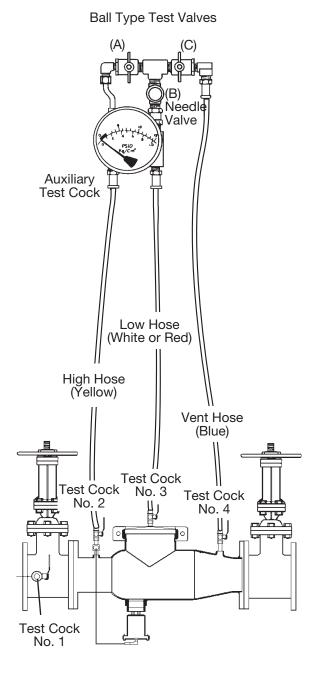
Requirements: After passing Test No. 1, continue to Test No. 2 by closing test cock #2. The indicated pressure differential will decrease slightly. If pressure differential continues to decrease (approaching 'zero'), shutoff #2 is reported to be 'leaking'.

Test No. 3

Purpose: To test check Valve No. 1 for tightness.

Requirements: Valve must be tight against reverse flow under all pressure differentials. Close 'high' valve A and open test cock #2. Close test cock #4. Disconnect vent hose at test cock #4. Open valves B and C, bleeding to atmosphere. Then closing valve B restores the system to a normal static condition. Observe the pressure differential gauge. If there is a decrease in the indicated value, check valve No. 1 is reported as 'leaking'.

Test No. 4


Purpose: To test operation of pressure differential relief valve. Requirements: The pressure differential relief valve must operate to maintain the 'zone' between the two check valves at least 2psi less than the supply pressure. Close 'vent' valve C. Open 'high' valve A. Open the 'low' valve B very slowly until the differential gauge needle starts to drop. Hold the valve at this position and observe the gauge reading at the moment the first discharge is noted from the relief valve. Record this as the opening differential pressure of the relief valve.

NOTICE

It is important that the differential gauge needle drops slowly. Close test cocks #2 and #3. Use 'vent' hose to relieve pressure from test kit by opening valves A, B and C. Remove all test equipment and open shutoff #2.

A CAUTION

To prevent freezing, hold Test Kit vertically to drain differential gauge and hoses prior to placing in case.

Troubleshooting Guide

PROBLEM	CAUSE	SOLUTION
A. Assembly discharges from differential relief valve during no flow condition.	Fouled first check	Disassemble and clean No. 1check valve
	Fluctuating inlet pressure	Control supply line water pressure
	Outlet pressure higher than inlet pressure & leak in No. 2 check valve	Disassemble, clean #2 check valve & identify cause of back pressure.
	Leak through diaphragm or around flange bolt holes of relief valve	Service relief valve (page 3)
	Pressure relief valve does not close	See problem D
B. Assembly discharges from differential	No. 1 check valve wedged open	Disassemble and clean No. 1 check valve
relief valve during a flow condition.	O-ring displaced from groove in 1st check	Disassemble and replace
	Pressure relief valve does not close Fluctuating line pressure	See problem D
C. Differential pressure relief valve does not open during test due to leaking outlet gate valve.	Differential pressure across No. 1 check valve stays above 2psi due to leaking outlet gate valve	Repair shut-off valves
	Weak or broken relief valve spring	Disassemble and replace relief valve spring
	Shut off seat tube bound in body	Disassemble and repair
	Plugged hydraulic hose	Disassemble and repair
D. Pressure relief valve does not close	Debris on sealing surface	Remove relief valve and clean
	Plugged hydraulic hose	Disassemble and clean
	Damaged seat or rubber shut off disc	Remove relief valve assembly and replace
	Ruptured diaphragm	Disassemble and replace diaphragm
	Wrinkled or improperly installed diaphragm	Disassemble and properly position diaphragm

Problem Identification Procedures

When using differential pressure gauge:				
A. Check differential across No. 1 check valve				
READING	PROBLEM			
2 to 3 psid	Leak in No. 1 or No. 2 check valve			
4 to 7 psid and steady	Malfunctioning pressure relief valve			
2 to 7 psid	Inlet pressure fluctuation			

Without using differential pressure gauge:				
A. Close gate valve No. 2				
RESULT	PROBLEM			
If discharge stops	Leak in No. 2 check valve			
If discharge does not stop	Go to B			
B. Open No. 4 testcock to produce a flow greater than differential relief valve discharge				
RESULT	PROBLEM			
If discharge stops	Leak in No. 1 check valve			
If discharge does not stop	Malfunctioning pressure relief valve			

For additional information, visit our web site at: www.amesfirewater.com

WARNING: This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.

For more information: www.watts.com/prop65

Limited Warranty: Ames Fire & Waterworks (the "Company") warrants each product to be free from defects in material and workmanship under normal usage for a period of one year from the date of original shipment. In the event of such defects within the warranty period, the Company will, at its option, replace or recondition the product without charge.

THE WARRANTY SET FORTH HEREIN IS GIVEN EXPRESSLY AND IS THE ONLY WARRANTY GIVEN BY THE COMPANY WITH RESPECT TO THE PRODUCT. THE COMPANY MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED. THE COMPANY HEREBY SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The remedy described in the first paragraph of this warranty shall constitute the sole and exclusive remedy for breach of warranty, and the Company shall not be responsible for any incidental, special or consequential damages, including without limitation, lost profits or the cost of repairing or replacing other property which is damaged if this product does not work properly, other costs resulting from labor charges, delays, vandalism, negligence, fouling caused by foreign material, damage from adverse water conditions, chemical, or any other circumstances over which the Company has no control. This warranty shall be invalidated by any abuse, misuse, misapplication, improper installation or improper maintenance or alteration of the product.

Some States do not allow limitations on how long an implied warranty lasts, and some States do not allow the exclusion or limitation of incidental or consequential damages. Therefore the above limitations may not apply to you. This Limited Warranty gives you specific legal rights, and you may have other rights that vary from State to State. You should consult applicable state laws to determine your rights. SO FAR AS IS CONSISTENT WITH APPLICABLE STATE LAW, ANY IMPLIED WARRANTIES THAT MAY NOT BE DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO ONE YEAR FROM THE DATE OF ORIGINAL SHIPMENT.

www.amesfirewater.com

SO 9001-2008

A Watts Water Technologies Company

USA: Backflow- Tel: (916) 928-0123 • Fax: (916) 928-9333 Control Valves- Tel: (713) 943-0688 • Fax: (713) 944-9445

Canada: Tel: (905) 332-4090 • Fax: (905) 332-7068